Corrigé du DM n°10

Exercice [EDHEC 2009].

1. En $x \in]-\infty, 1[$ et $x \neq 0$, on a 1-x > 0, de plus

$$\ln(1-x) \neq 0 \Leftrightarrow 1-x \neq 1 \Leftrightarrow x \neq 0$$

Donc f est continue sur $]-\infty,0[$ et sur]0,1[comme quotient et composée de fonctions continues.

En 0 : on sait que $\ln(1+x) \sim x$ donc $\ln(1-x) \sim -x$ et

$$f\left(x\right) = \frac{-x}{\left(1 - x\right)\ln\left(1 - x\right)} \sim \frac{-x}{-x\left(1 - x\right)} \xrightarrow[x \to 0]{} 1$$

Donc $f(x) \xrightarrow[x \to 0]{} 1 = f(0)$ et f est continue en 0.

Conclusion: f est continue sur $]-\infty,1[$

2. (a) On a

$$\ln(1+x) = x - \frac{1}{2}x^2 + o(x^2)$$

. Si x est au voisinage de 0, -x l'est également, ce qui nous permet d'écrire

$$\ln(1-x) = -x - \frac{1}{2}(-x)^2 + o((-x)^2)$$

Conclusion: $\ln(1-x) = -x - \frac{1}{2}x^2 + o(x^2)$

(b) Le taux d'accroissement en 0 est :

$$\frac{f(x) - f(0)}{x - 0} = \frac{\frac{-x}{(1 - x)\ln(1 - x)} - 1}{x}$$

$$= \frac{-x - (1 - x)\ln(1 - x)}{x(1 - x)\ln(1 - x)}$$

$$= \frac{-x - (1 - x)\left[-x - \frac{1}{2}x^2 + o(x^2)\right]}{x(1 - x)\left[-x + o(x)\right]}$$

$$= \frac{x^2\left(-1 + \frac{1}{2}\right) + o(x^2)}{x^2(1 - x)\left[-1 + o(1)\right]}$$

$$= \frac{-\frac{1}{2} + o(1)}{(1 - x)\left[-1 + o(1)\right]}$$

$$\xrightarrow[x \to 0]{} \frac{1}{2}$$

Conclusion : f est dérivable en 0 et $f'(0) = \frac{1}{2}$

3. (a) Sur $]-\infty, 0[$ et sur $]0, +\infty[$, on a 1-x>0 donc $x\mapsto \ln(1-x)$ est dérivable comme composée de fonctions dérivables et comme $(1-x)\ln(1-x)\neq 0$ alors f est dérivable comme quotient de fonctions dérivables.

$$f'(x) = \frac{-(1-x)\ln(1-x) + x \left[-\ln(1-x) - 1\right]}{\left[(1-x)\ln(1-x)\right]^2}$$

$$= \frac{-(1-x)\ln(1-x) - x \ln(1-x) - x}{\left[(1-x)\ln(1-x)\right]^2}$$

$$= \frac{-\ln(1-x) - x}{\left[(1-x)\ln(1-x)\right]^2}$$

(b) Soit $g(x) = \ln(1-x) + x$ pour tout x < 1. g est dérivable sur $]-\infty, 1[$ et

$$g'(x) = \frac{-1}{1-x} + 1$$
$$= \frac{-x}{1-x}$$

g'(x) est donc du signe de -x,

x		0		1
g'(x)	+	0	_	
$g\left(x\right)$	7	0	>	

Donc g est négative sur $]-\infty,1[$. De plus, f'(x) est du signe opposé de celui de g(x), donc f est strictement croissante sur $]-\infty,1[$

(c) En $-\infty$:

$$f(x) = \frac{-x}{(1-x)\ln(1-x)}$$

$$= \frac{-x}{-x(1-1/x)\ln(1-x)}$$

$$= \frac{1}{(1-1/x)\ln(1-x)} \xrightarrow{x \to -\infty} 0$$

En 1⁻ : soit $h = 1 - x \to 0^+$

$$\begin{array}{lcl} f\left(x\right) & = & \frac{-x}{\left(1-x\right)\ln\left(1-x\right)} \\ & = & \frac{1-h}{h\ln\left(h\right)} \underset{h \rightarrow 0}{\longrightarrow} +\infty & \text{par croissance compar\'ee.} \end{array}$$

	x	$-\infty$		0		1	
d'où	f'(x)		+	1/2	+		
	f(x)	0	7	1	7	$+\infty$	

4. (a) f est continue et strictement croissante sur [0,1[, donc d'après le théorème de la bijection monotone f est donc bijective de [0,1[dans $\left| f\left(0\right),\lim_{x\to 1^{-}}f(x)\right| = [1,+\infty[.$

Pour tout $n \in \mathbb{N}^*$ on a $n \in [1, +\infty[$.

Conclusion : Donc l'équation f(x) = n a une unique solution u_n dans [0,1]

Et comme f(0) = 1, on a donc

Conclusion: $u_1 = 0$

(b) La réciproque de f sur [0,1] est continue et a pour variations (par symétrie) :

x	1		$+\infty$
$f^{-1}(x)$	0	7	1

et comme $u_n = f^{-1}(n)$ alors Conclusion : $u_n \xrightarrow[n \to +\infty]{} 1$.

Exercice facultatif [ESC 2002].

1. Pour tout x > 0, on a $1 + x^2 > 0$ et $n + 1 + nx^2 > 0$ donc f_n et h sont continues sur \mathbb{R}_+^* comme quotients bien définis de fonctions continues.

On a alors:

	x	0		1		$+\infty$
	$\ln\left(x\right)$		_	0	+	
ĺ	$f_n(x)$		_	0	+	
ĺ	$h\left(x\right)$		_	0	+	

2. (a) $x \mapsto \frac{\ln x}{x^2}$ est continue sur $[1, +\infty[$. $\int_1^{+\infty} \frac{\ln x}{x^2} dx$ est impropre en $+\infty$. Soit $M \ge 1$, calculons

$$\int_{1}^{M} \frac{\ln x}{x^2} dx$$

En intégrant par parties avec $u\left(x\right)=\ln\left(x\right)$: $u'\left(x\right)=\frac{1}{x}$: $v'\left(x\right)=\frac{1}{x^{2}}$: $v\left(x\right)=-\frac{1}{x}$. u et v de classe C^{1} sur

$$\int_{1}^{M} \frac{\ln x}{x^{2}} dx = \left[-\ln\left(x\right) \frac{1}{x} \right]_{1}^{M} - \int_{0}^{M} -\frac{1}{x^{2}} dx = -\frac{\ln\left(M\right)}{M} + \left[-\frac{1}{x} \right]_{1}^{M} \underset{M \to +\infty}{\longrightarrow} 1 \quad \text{par croissance comparée.}$$

Conclusion :
$$\int_{1}^{+\infty} \frac{\ln x}{x^2} dx$$
 converge et vaut 1.

(b) Pour tout
$$x \in \mathbb{R}$$
 on a $1 + x^2 \ge x^2 > 0$ donc $\frac{1}{x^2 + 1} \le \frac{1}{x^2}$ et pour $x \ge 1$ comme $\ln(x) \ge 0$ alors

$$0 \le \frac{\ln x}{1 + r^2} \le \frac{\ln x}{r^2}.$$

Comme $\int_1^{+\infty} \frac{\ln x}{x^2} dx$ converge, d'après le critère de comparaison par inégalité, $\int_1^{+\infty} h(x) dx$ converge. Dans toute la suite de l'exercice on note alors K l'intégrale impropre :

$$K = \int_{1}^{+\infty} h(x) \ dx.$$

3. (a)
$$x \mapsto \frac{\ln x}{x^2}$$
 est continue sur $]0,1]$. $\int_0^1 h(u) \ du$ est impropre en 0. Soit $\varepsilon > 0$, calculons

$$\int_{0}^{1} \frac{\ln x}{x^2} dx$$

Par changement de variable $u=\frac{1}{x}:u=1 \leftrightarrow x=1:u=\varepsilon \leftrightarrow x=\frac{1}{\varepsilon}:x \to \frac{1}{x}$ de classe $C^1\left[1,\frac{1}{\varepsilon}\right]:du=\frac{-1}{x^2}dx$

$$\int_{\varepsilon}^{1} h(u) \ du = \int_{1/\varepsilon}^{1} -h\left(\frac{1}{x}\right) \frac{1}{x^{2}} dx.$$

Et comme

$$h\left(\frac{1}{x}\right) = \frac{\ln\left(\frac{1}{x}\right)}{1 + \left(\frac{1}{x}\right)^2} = -\frac{x^2 \ln\left(x\right)}{x^2 + 1}$$

alors

$$\int_{\varepsilon}^{1} h(u) \ du = -\int_{1}^{1/\varepsilon} \frac{\ln\left(x\right)}{x^{2}+1} dx \underset{\varepsilon \to 0^{+}}{\longrightarrow} -\int_{1}^{+\infty} \frac{\ln\left(x\right)}{x^{2}+1} dx = -K$$

Conclusion: $\int_0^1 h(u) \ du \text{ converge et vaut } -K.$

(b) Comme $h(x) \leq 0$ pour $x \leq 1$ on a $\int_0^1 |h(x)| \ dx = \int_0^1 -h(x) \ dx$ converge et vaut K. Et comme $h(x) \geq 0$ pour $x \geq 1$ on a $\int_1^{+\infty} |h(x)| \ dx = \int_1^{\infty} h(x) \ dx$ converge et vaut K.

(c) Donc $\int_0^{+\infty} h(x) dx$ est absolument convergente donc convergente.

$$\int_0^{+\infty} h(x) \ dx = \int_0^1 h(x) \ dx + \int_1^{+\infty} h(x) \ dx = K - K = 0$$

4. (a) Comme $n+1+nx^2 \ge 0$ et $1+x^2 \ge 0$, alors pour tout x>0

$$\left|f_{n}\left(x\right)\right|-\left|h(x)\right|=\left|\frac{n\ln x}{n+1+nx^{2}}\right|-\left|\frac{\ln x}{1+x^{2}}\right|=\left|\ln \left(x\right)\right|\left(\frac{n}{n+1+nx^{2}}-\frac{1}{1+x^{2}}\right)=\left|\ln \left(x\right)\right|\frac{-1}{\left(n+1+nx^{2}\right)\left(1+x^{2}\right)}\leq0$$

Donc $0 \le |f_n(x)| \le |h(x)|$ et comme $\int_0^{+\infty} |h(x)| dx$ converge, d'après le critère de comparaison par inégalité, $\int_0^{+\infty} |f_n(x)| dx$ converge.

Conclusion: $\int_0^{+\infty} f_n(x) dx \text{ est absolument convergente donc convergente.}$

(b) Pour tout réel x strictement positif,

$$h(x) - f_n(x) = \frac{\ln x}{1 + x^2} - \frac{n \ln x}{n + 1 + nx^2} = \frac{\ln x}{1 + x^2} \left(1 - \frac{n(1 + x^2)}{n + 1 + nx^2} \right)$$
$$= \frac{\ln x}{1 + x^2} \left(\frac{n + 1 + nx^2 - n(1 + x^2)}{n + 1 + nx^2} \right) = \frac{h(x)}{n + 1 + nx^2}$$

(c) On a alors pour tout réel x, $n+1+nx^2 \ge n+1 > 0$ et $\frac{1}{n+1+nx^2} \le \frac{1}{n+1}$ et donc pour $x \ge 1$ et en multipliant par $h(x) \ge 0$,

$$0 \le h(x) - f_n(x) = \frac{h(x)}{n+1+nx^2} \le \frac{h(x)}{n+1}$$

Pour $M \geq 1$, en intégrant sur [1,M] on obtient

$$0 \le \int_{1}^{M} h(x) - f_{n}(x) dx \le \int_{1}^{M} \frac{h(x)}{n+1} dx = \frac{1}{n+1} \int_{1}^{M} h(x) dx$$

et par passage à la limite dans les inégalités (on sait déjà que les limites existent)

$$0 \leqslant \int_{1}^{+\infty} (h(x) - f_n(x)) \ dx \leqslant \frac{K}{n+1}$$

De même si $0 < x \le 1$ alors $\ln(x) < 0$ et $\frac{h(x)}{1+n} \le \frac{h(x)}{n+1+nx^2} \le 0$ d'où en intégrant sur $[\varepsilon,0]$ et en passant à la limite quand $\varepsilon \to 0^+$:

$$-\frac{K}{n+1} \leqslant \int_0^1 (h(x) - f_n(x)) \ dx \leqslant 0$$

(d) Par encadrement on a alors

$$\int_{1}^{+\infty} (h(x) - f_{n}(x)) dx \xrightarrow[n \to +\infty]{} 0 \quad \text{et} \quad \int_{0}^{1} (h(x) - f_{n}(x)) dx \xrightarrow[n \to +\infty]{} 0$$

$$\int_{1}^{+\infty} f_{n}(x) dx \xrightarrow[n \to +\infty]{} \int_{1}^{+\infty} h(x) dx = K \quad \text{et} \quad \int_{0}^{1} f_{n}(x) dx \xrightarrow[n \to +\infty]{} \int_{0}^{1} h(x) dx = -K$$

$$Conclusion: \lim_{n \to +\infty} \int_{0}^{+\infty} f_{n}(x) dx = -K + K = 0.$$